
` `

CrossDoc
Garrison Smith, Peter Huettl, Kristopher Moore, Brian Saganey

School of Informatics, Computing, and Cyber Systems; Dr. James Palmer

In software development, comments

are human-readable annotations that 

describe the code. Currently, these 

comments can only exist within the 

code they are describing. This causes 

several issues such as: 

• Poor comment discovery

• Disorganized documentation

• Not friendly to non-developers

• Lack of comment type-grouping

Solution: CrossDoc is a comment 

management system that decouples

software comments from the code it 

describes. CrossDoc accomplishes 

this by connecting external comment 

stores to a project’s codebase.

This separation of concerns enables 

distinct comment categories, external 

comment management functionalities, 

and advanced comment tooling.

These capabilities will improve the 

documentation systems for both 

individual developers and software 

developers working in a team.

Requirements: The primary 

requirements of CrossDoc are:

• Simple setup process

• External comment storage

• Intuitive comment editing

• Functional text editor plugins

• Atom

• Emacs

• Sublime

• Vim

CrossDoc was designed with a MVC 

architecture. This architectural pattern 

is comprised of 3 main components:

• Model: The CrossDoc Repository

stores the system’s meta-data.

• View: The Text Editor Plugins are 

the visual representation of the 

system information.

• Controller: The Command Line 

Program handles user interaction 

and manipulates the model.

The CrossDoc back-end tool is written 

in Python. The program is distributed 

and installed through the pip package 

management system.

We utilize the unittest and urllib

Python libraries for automated testing 

and network requests respectively. 

Text Editor Plugins

Atom – JavaScript

Emacs – Elisp

Sublime – Python

Vim – VimScript

Team Collaboration

Communication – Slack

Documents – Google Drive

Task Management – Trello

Version Control – GitHub

The tight coupling of comments and 

code in software projects creates 

inefficiencies in the development 

process. These inefficiencies cost 

development effort and delay work 

on team projects. CrossDoc aims to 

fix this by providing the following:

• Searchable comment storage

• External storage sets

• Intuitive wiki interface

• Distinct comment categories

We have integrated these features 

into text editor plugins, and in this 

way, CrossDoc has addressed the 

primary requirements outlined. 

CrossDoc utilizes an MVC style 

architecture with its 3 main modules, 

the CrossDoc Repository, the Text 

Editor Plugins, and the Command 

Line Program.

Figure 2: Integrated text editor 

plugins (Vim & Sublime pictured)

Figure 1: Wiki interface to edit 

comments outside the code.

Figure 3: Comment category 

switching through the use of hotkeys

Problem Statement

Solution & Requirements

Architecture Prototype

Technologies Conclusion

CrossDoc

To-doMetadata

API Documentation

TranslationsDebugging

ctrl+c+n

ctrl+p+n


